Obróbka cieplna to proces, która ma na celu wzrost właściwości mechanicznych materiałów, w szczególności ich odporności na zużycie. Narzędzia, które są narażone na intensywne obciążenia i działanie agresywnych warunków, takich jak tarcie, wymagają specjalistycznej obróbki, aby zwiększyć ich trwałość. Właśnie tutaj obróbka cieplna odgrywa kluczową rolę, pozwalając na znaczne poprawienie odporności na zużycie, co przekłada się na dłuższą eksploatację narzędzi.
Mechanizmy odkształcania narzędzi
Aby zrozumieć, jak obróbka cieplna podnosi odporność narzędzi na zużycie, warto przyjrzeć się mechanizmom, które prowadzą do ich uszkodzenia.
Ścieranie – proces, w którym materiał narzędzia ulegają wytarciu wskutek kontaktu z przerabianym materiałem.
Zmęczenie materiału – powstawanie mikropęknięć w strukturze pod wpływem cyklicznych sił.
Adhezja – przywieranie cząsteczek materiału obrabianego do powierzchni narzędzia, co może prowadzić do jego degradacji.
Korozja – degradacja materiału pod wpływem warunków atmosferycznych, takich jak wilgoć, zanieczyszczenia czy wysokie gorąco.
Obróbka cieplna umożliwia modyfikację struktury metalu, co pomaga zminimalizować te zjawiska i poprawić odporność narzędzi na ścieranie.
Metody obróbki cieplnej w celu zwiększenia odporności na zużycie
Obróbka cieplna obejmuje różnorodne technologie, które mają na celu podniesienie właściwości narzędzi w kontekście odporności na uszkodzenia.
1. Hartowanie
Hartowanie to technika, w którym materiał jest podgrzewany do wysokiej gorączki, a następnie szybko schładzany w medium chłodzącym, takim jak olej. Efektem jest uzyskanie struktury martenzytycznej, która zapewnia wyjątkową twardość i wytrzymałość na uszkodzenia. Narzędzia poddane hartowaniu są bardziej odporne na intensywne naprężenia.
2. Odpuszczanie
Odpuszczanie jest procesem, który polega na podgrzewaniu stali do określonej gorączki, a następnie stopniowym jej schładzaniu. Celem jest redukowanie kruchości materiału i zwiększanie jego plastyczności. Narzędzia, które są jednocześnie twarde i elastyczne, skuteczniej znoszą obciążenia mechaniczne, co wydłuża ich trwałość.
3. Azotowanie
Azotowanie to proces cieplno-chemiczna, która polega na wprowadzaniu azotu do warstwy powierzchniowej metalu. Dzięki temu powstaje twarda warstwa azotków, która znacząco poprawia odporność na ścieranie oraz agresywne działanie środowiska. Narzędzia poddane azotowaniu charakteryzują się znakomitą odpornością na uszkodzenia mechaniczne oraz działanie wysokich gorączki.
4. Nawęglanie
Nawęglanie to proces, który polega na nasyceniu powierzchni stali w węgiel, co zwiększa jej twardość. Proces ten pozostawia rdzeń materiału elastyczny, a warstwę wierzchnią wzmacnia węglem. Narzędzia nawęglane są odporne na zużycie i regularne obciążenia.
5. Powłoki ochronne
W celu zwiększenia odporności na zużycie, stosuje się także powłoki ochronne, takie jak chromowanie, niklowanie czy powłoki ceramiczne. Dzięki tym powłokom, narzędzia stają się bardziej odporne na ścieranie oraz agresywny wpływ środowiska.
Przykłady zastosowania obróbki cieplnej w narzędziach
1. Narzędzia skrawające
Wiertła, frezy i noże tokarskie to narzędzia, które są szczególnie narażone na intensywne ścieranie. Stosowanie hartowania oraz azotowania pozwala na poprawę ich twardości oraz wytrzymałości na wysokie temperatury, co pozwala na ich dłuższe i efektywniejsze użytkowanie.
2. Narzędzia tłoczące
Matrzyce, stemple i inne narzędzia używane w procesach tłoczenia są podatne na duże obciążenia i ścieranie. Azotowanie oraz nawęglanie tych narzędzi pozwala na zwiększenie ich odporności na uszkodzenia.
3. Narzędzia ręczne
Młotki, klucze, przecinaki i inne narzędzia ręczne, które wymagają wysokiej wytrzymałości, są przechodzą hartowanie, co zapewnia im trwałą trwałość i odporność na uszkodzenia.
Obróbka cieplna to nieodzowny element w produkcji narzędzi, który pozwala na modyfikację właściwości materiałów i odporności na uszkodzenia. Dzięki odpowiednio dobranym procesom, takim jak hartowanie, odpuszczanie, azotowanie czy nawęglanie, możliwe jest znaczne wzrost żywotności narzędzi, co przekłada się na ich wydajność oraz trwałość w długoterminowej eksploatacji.